Dies ist eine alte Version des Dokuments!
Concepts are borrowed mainly from Java here.
Use assert
to handle errors in code. An assertion can be seen as a runtime exception which is never catched and can be switched of. Both assertions an runtime exceptions deal with errors in the code.
Use check
when you neigher want or can afford exception handling nor program termniation
/* assert.h */ #define check(expr) (__check((expr), #expr, __FILE__, __LINE__)) int __check(int expVal, const char *expStr, const char *file, unsigned line); /* assert.c */ int __check(int exp, const char *expS, const char *file, unsigned int line) { if (!exp) fprintf( stderr, "\n!!!Check failed:\n expression: %s\n file: %s\n line: %u\n", expS, file, line ); return exp; }
Handle exceptions with the tips below:
For error handling its acceptable to use goto
. Thus the indention level isn't increased by error handling:
int addConfigValue(const char *key, int value) { int err= 0; // always initalize because of function of type fopen()! FILE file; if (! file= fopen("values.conf")) { /* exemplary function call */ err= FIRST_ERR; goto do_cleanup; } value += getValFromKey(key, &err); /* exemplary function call */ if (err) { err= SECOND_ERR; goto do_cleanup; } if (err= setValFromKey(key, value);) { /* exemplary function call */ err= THIRD_ERR; goto do_cleanup; /* not really necesarry but saver if something is added later */ } do_cleanup: /* clean up: close files, etc and print debug message */ return err; }
This rules only apply if the function is stand-alone i.e. it is not an instance method of a class.
If possible use always int
as error variable. If the function…
Needs reworking
If the function is an instance method of a class, the error code should be written to an instance variable of type int (eg this→err), so that the return value remains alwas free for other informations. To get an integrated error handling in the class, all instance methods shall use this mechanism rather than many different mechanisms mentioned above
Verify: Keep in mind that all public methods eighter have to set this→err to 0 or check this→err at first, because otherwise the method may return falsely with an err code which did not happen at all!
Proposal: Favor resetting over checking this→err because: — 2007-10-23
Have a central place for error codes and error texts. Public functions must use these error codes to indicate errors for client code:
/* json.h */ enum Json_ErrorCodes { JSONERR_OK, JSONERR_WRONG_TYPE, JSONERR_CREATESTRING, JSONERR_FROM_LIB_A, /* An undocumented error (errmsg is missing) */ JSONERR_FROM_LIB_B, /* An undocumented error (errmsg is missing) */ JSONERR_ERRCNT, /* To get the number of error codes */ }; /* json.c */ static const char *errmsgs[]= { NULL, "Element %u is not a JsonValue of type %s!", "String creation failed!", NULL, NULL } /* #define ERRMSG_CNT (sizeof(errmsgs)/sizeof(errmsgs[0])) obsolete use errcnt */
Becaus of inheritance count of error codes and size of error messages must match!
During development, when the centralized array with the error messages is still missing, the error reporter function falls back to just printing a default message like:
Json ERROR: json.c 33: Code 4 at ...
We distinguish between primary errors and follow-up errors.
A primary error typically results from a failed logical test, eg. if the value of a variable isn't within a certain range. The function always aborts after a primary error. All primary errors must be reported.
A follow-up error results from a failed call to a function of the same or another class. The function may abort after a follow-up error or handle that error (see below). But if the function aborts, it must be reported.
Primary errors are reported with an error text, the file name and the line number where they occured. The centralized error codes are always used. Errors may reported directly where they occor or centralized at the end of the function (see above).
If a follow-up error is not handled (i.e. function aborts), it will also be reported, but indented. Only file name and line number is printed. Example:
ArrayList ERROR: Index out of range! <== primary error at arrayList.c:69 <== follow-up errors at json.c:137 at json.c:267
If a function must be aborted because of a follow-up error, the error code of the called function will not be returned. Instead one error code of the own lib or class, is returned (exception translation). That way the error codes of different classes and libs are independent from each other. Typically every used class get only one error code in the client class.
This also means that a class normally has more error codes than error messages. If this is the case, the error message array has to be filled with NULL-Pointers where messages are missing. This is necessary because with subclass usage (see below) the size of the array must be the same as the error message count.
If the follwow-up error results from a call to a function of same class or lib, the set error code is not touched. It code is only set once, the error text is only reported once, directly where the true error happens. The callers of the function where the error occured just report the line number and file of the funciton call.
This is the default. A follow up is reported as described above (indendet, with filename and line number, but without error message). The error message comes from the called function.
If a function of a client class C does not abort after a follow-up error e.g. library class L it handles these error. In this case the error reporting of L mutst be switched of completly.
But this also means, that all follow up errors of L must be eighter handled or reported as primary error in C
To switch off error reporting of class L, L must provide a function for that, like L_setVerbosity()
. In the body of this function all error reporting in classes that L on his part uses, must also switched of.
If class B is derived form class A, than b also uses the Diagnose member of class A insted of creatin an own. Class B does this by adding it's custom error messages to the Diagnose member of class A.
Suppress the output of deeper nested primary errors as soon as less deeper nested code calls itself the primary error reporter function Diag_err()
For example if an item is searched in an container by the help of the method of the container class, the error messages of the container are irrelevant. It schould just be reported that the item wasn't found in the client code, not in the container class. The analogy in Java would be a catched exception which isn't reported neither.
This could be done by adding all error messages to a char array. Each call to the report function of a primary error empties that array. The array must be secured against overflow (a growable container is too expensive) and reporting the content of the array needs an extra function call (at the end of main() ).
Think about: Make an error class which contains an int code, a char[80] message and a pointer to the previous error object. No stack, no heap necessary??? Problem: all objects must still exist, when err chain is reported — 2008-01-10
int i= 0; while (i<MAX) { if ( someThingHappend() ) break; else { doSomething(); i++; } }
is the same as:
int i; for (i=0; i<MAX; i++) { if ( someThingHappend() ) break; else doSomething(); }
for (expr1; expr2; expr3) statement
ist according to „The C programming language“ p.59 the same as:
expr1; while (expr2) { statement expr3 //expr3 comes after statement }
int main(int argc, char **argv){ char * progName= argv[0]; // Filename of programm itself if (argc >= 2) char * firstArg= argv[1]; // First Argument } int main(void){} // is also possible (Carm p.416) // don't omit void! (Carm p.278)
Some investigations:
int main(int argc, char* argv[]) // Stroustrup p.126 int main(int argc, char* argv[]) // Josuttis p.21 int main(int argc, char* argv[], char *env[]) // (!) Breymann p.216 int main(int argc, char *argv[]) // glibc reference int main(int argc, char *argv[]) // Kernighan / Ritchie int main(int argc, char *argv[]) // Harbison / Steele int main(int argc, char **argv) // gtk reference int main(int argc, char **argv) // qt reference int main(int argc, char **argv) // fluxbox source
→ I use
char *cp
because
char lin[MAX_LINE_LEN]; while (fgets(lin, MAX_LINE_LEN, stdin)) {/* do some thing */} /* Reads stdin line by line into the array lin */
printf("%s=%u\n", key, value); // writing to stdout fprintf(stderr, "%s=%u\n", key, value); // writing to stderr
Just an example:
printf("\033[32mgreen text\033[0m"); printf("\033[1;31mbold red text\033[0m");
See color_indicator[]
in sourcecode of ls
, ABS Guide and C&R S.38
const int ic = 6; /* int const ic = 6; Seems to be the same (gcc 3.4.6 / 2007-10-25) */ ic = 7; //invalid ic++; //invalid
see CaRM p.81
const int * pointer2const; // pointer to constant data int * const constPointer; // constant pointer (points always 2 the same place) const int * const constPointer2const; // constant pointer to constant data
see CaRM p.81 and source code of CVS
Rule: An array type is always automatically converted to a constant pointer to the first element
int a, b; const int * const api[] = {&a, &b}; const int * const * const api = {&a, &b}; *(api[0]) = 9; // forbidden by FIRST const in array definition api[0][0] = 9; // forbidden by FIRST const in array definition api[0] = &b; // forbidden by SECOND const in array definition
Tested with gcc 3.3.4
int if1(void) {return 1;} int if2(void) {return 2;} void pointer2FunctionTest(void) { int (* fp1)(void) = if1; // fp1,fp2: pointer to function returning int (* const fp2)(void) = if2; // int and empty parameter list fp1 = if2; // valid fp2 = if1; // invalid: ok } void arrayOfPointers2FunctionsTest(void) { int (* fa[])(void) = {if1, if2}; int (* const cfa[])(void) = {if1, if2}; fa[0] = if2; // valid, but intended? cfa[0] = if2; // invalid because of const: ok }
Note the position of the const variable, this is the only position of const that
makes sense (Tested with gcc 3.3.4 and CadulCompiler for Rmos)
void fkt(const int a, const int *bp, int * const cp) { a++; // invalid! bp++; // valid (*bp)++; // invalid! cp++; // invalid! (*cp)++; // valid }
pointer to constant data (bp) is imho the only useful & reasonable use
int if1(void) {return 1;} const int cif1(void) {return 1;} void functionReturningConstTest(void) { int i; const int ci; i = cif1(); i = if1(); // both valid ci = cif1(); ci = if1(); // both INVALID! i = (cif1())++; i = (if1())++; // both INVALID! i = ++(cif1()); i = ++(if1()); // both INVALID! }
→ function returning const is imho useless
int * ipf(void) {return 0;} const int * cipf(void) {return 0;} // funct. returning pointer 2 constat data void functionReturningConstPointerTest(void) { int *ip; const int *cip; ip= ipf(); // ok ip= cipf(); // generates warning (gcc): imho better would be an error! cip= ipf(); // ok cip= cipf(); // ok }
[static] const char mystring[]= "String" // right, needs 6 Bytes [static] const char *mystring= "String" // false, needs 6 Bytes + Pointer
static
to limit the scope for global strings. Not necessary inside a code block./** Array of constant data. Is automatically converted to a CONSTANT of type "pointer to const char" (the type of the array-elements) wich contains the address of the first element. See CARM p 95. Best way to initalize strings. */ const char a[]= "Alma"; /** Constant pointer to constant data, but not a CONSTANT (like a above) Intitalizing a string like this is bad, see above */ const char * const b= "Berta"; /** Same type as b, but ok for a re-use of a e.g. as function argument. */ const char * const c= a; /** Array of constant pointers (second const) to constant data (first const) 1st const necessary because of a */ const char * const apc[] = { a, "Willi", /* perfectly legal */ /* b, c // illegal, because extern or static variables can only be // initialized with CONSTANTS not constant variables // see [[Initialisation of variables]] */ }; /** Constant Pointer (3rd const) to constant pointer (second const) to constant data (first const) */ const char * const * const ppc= apc; int main(void) { /* a = 0; //err: Every array is conv. to const ptr to 1st element */ /* b[0] ='A'; //err: a[] is declared as const */ /* apc[0] = 0; //err: because of 2nd const in apc definition */ /* apc[0][0]='d'; //err: because of 1st const in apc definition */ /* ppc = 0; //err: because of 3rd const in ppc definition */ /* ppc[0] = 0; //err: because of 2nd const in ppc definition */ /* ppc[0][0]='d'; //err: because of 1st const in ppc definition */ return 0; }
//Feld von Zeigern auf Funktionen: static const unsigned char (*setS5Bit[])(unsigned char zielNr, unsigned char bit)={ NULL,//Reserviert, wenn Eingang nicht aktiv konvKom0SetS5Bit, konvKom1SetS5Bit, extStmSetS5Bit, extBtmSetS5Bit, extGeraetSetS5Bit }; #define GETS5BITADR_FKTANZ (sizeof (setS5Bit) / sizeof (setS5Bit[0]))
Bestimmung der Größe des obigen Arrays:
Einsicht in die vom Preprocessor erzeuge Zwischendatei peripher.i (mit der Compileroption -VCPP zeigte, daß GETS5BITADR_FKTANZ wirklich nur textuell durch die sizeof- Klammerausdrücke ersetzt wird, und keine Berechnung erfolgt.
Einsicht in das generierte Assemblerfile peripher.asm ergab, daß die sizeof-Operatoren zur Compilierungszeit und nicht zur Laufzeit ausgeführt werden.
→ Keine Verschwendung von Laufzeit.
/* Extern & static variables must be initialized with a constant expression: See C&R 4.9 p.83 */ int a; /* uninitialized extern or static variable defaults to 0 */ int b=1; const int c=3; //int m= b; /* error in c! (no error in c++) */ //int n= c; /* also error in c! (no error in c++) */ /* automatic variables need no constant expression: See C&R 4.9 p.83 */ int main() { int u= b+c; /* valid shortcut for: int u; u=b+c; */ int v[]= {a,b}; /* valid in c with gcc & in c++ */ return 0; }
Note: The initialisation of the (stack-)array v is valid with gcc, but issues a warning when gcc is called with the -pedantic switch.
int anInt; struct Point {int x; int y;}; struct Point aPoint= {2,3}; int main(){ int o= anInt; int p[]= {anInt,anInt}; struct Point q={3,4}; struct Point r[]={{3,4},{5,6}}; struct Point s=aPoint; struct Point t[]={aPoint,aPoint}; /* error with Cadul! (no error with gcc) */ }
/* arraySource.c: */ int arr[]= {3, 2, 1}; const unsigned ARR_CNT= sizeof arr / sizeof arr[0];
/* arraySource.h: */ extern const unsigned ARR_CNT;
/* target.c: */ #include <stdio.h> #include <stdlib.h> #include "arraySource.h" int main(int argc, char **argv) { int size= atoi(argv[1]); static int staticCmdArr[size]; /* Always Error! */ int stackCmdArr[size]; /* works with gcc without -pedantic-error */ static int staticTransArr[ARR_CNT]; /* Always Error! */ int stackTransArr[ARR_CNT]; /* works with gcc without -pedantic-error */ return 0; }
#Compiler Commands: gcc -Wall -ansi -pedantic-error -c target.c && gcc -c arraySource.c && gcc target.o arraySource.o && a.out 7 gcc -Wall -c target.c && gcc -c arraySource.c && gcc target.o arraySource.o && a.out 7
No satisfying solution so far — 2006-08-28 12:02
static int eumel= 0;
To prevent linker problems when other object files use other global variables with the same name.
static
should not be necessary for const
variables in functions; the compiler is probably clever enough to put constant values to the proper places in memory.int
(also when int is way too big or the value will never be never negative, eg. counter variable in for loops), unless one or more of the following exceptions apply:unsigned int
as parameter type in function declarations when only positive values are allowed. This saves you from the overhead of testing for nonnegative values.unsigned
types when bit operations are performed (unsigned types with proper size recommended)struct
definitions or large arrays)int
is not sufficientstdint.h
. It offers exact length types; smallest types of at least given length and most efficient typeslimits.h
to get the ranges of integer types 1)#define MAXFOOLEN 80
and reserve memory with one byte more for the 0-terminator: char sbf[MAXFOOLEN+1];
foo.h
. Include header files necessary only for the implementation in the foo.c
. The dependencies for the makefile is the sum of both.