Inhaltsverzeichnis

C Tips

This is about ISO C and its standard library. POSIX/Linux enhancements and features are described in Linux Programming. How to build applications is described in Build Tools.

CLI args and main()

int main(int argc, char **argv){
    char * progName= argv[0]; // Filename of programm itself
    if (argc >= 2) char * firstArg= argv[1]; // First Argument
}
 
int main(void){}
// is also possible (Carm p.416)
// don't omit void! (Carm p.278)

C Program Structure

Position of Pointer Sign

Some investigations:

int main(int argc, char* argv[]) // Stroustrup p.126
int main(int argc, char* argv[]) // Josuttis p.21
int main(int argc, char* argv[], char *env[]) // (!) Breymann p.216
int main(int argc, char *argv[]) // glibc reference
int main(int argc, char *argv[]) // Kernighan / Ritchie
int main(int argc, char *argv[]) // Harbison / Steele
int main(int argc, char **argv)  // gtk reference
int main(int argc, char **argv)  // qt reference
int main(int argc, char **argv)  // fluxbox source

→ I use

char *cp

because

  1. it seems to be more common
  2. declarations like „int a, *ap;“ are possible

Loops

Loops and break

int i= 0;
while (i<MAX) {
    if ( someThingHappend() )     break;
    else { doSomething(); i++; }
}

is the same as:

int i;
for (i=0; i<MAX; i++) {
    if ( someThingHappend() )     break;
    else doSomething();
}

While and For

for (expr1; expr2; expr3)
    statement

is the same as1):

expr1;
while (expr2) {
    statement
    expr3  //expr3 comes after statement
}

Standard In- and Output

stdin

/* Read a character from stdin: */
int i= getchar();
/* Read stdin line by line into the array lin: */
char lin[MAX_LINE_LEN];
while (fgets(lin, MAX_LINE_LEN, stdin)) {/* do some thing */}
If input line lenght is unknown, use getline() instead of fgets()!
(See freesigs/io_modbus)

scanf can also be used for reading from stdin.

stdout, stderr

/* Write a character to stdout and stderr: */
int i= 'c';
putchar(i);
putc(i, stderr):
/* Write a line to stdout and stderr: */
printf("%s=%u\n", key, value);           // writing to stdout (buffered)
fprintf(stderr, "%s=%u\n", key, value);  // writing to stderr (unbuffered)

Writing to stderr is unbuffered, writing to stdout is buffered 2) ⇒ Always use stderr for debugging messages 3)

Constants

const

const int ic = 6;
/* int const ic = 6; Seems to be the same (gcc 3.4.6 / 2007-10-25) */
 
ic = 7; //invalid
ic++;   //invalid

see CaRM p.81

const and pointer

const int * pointer2const; // pointer to constant data
int * const constPointer; // constant pointer (points always 2 the same place)
const int * const constPointer2const; // constant pointer to constant data

see CaRM p.81 and source code of CVS

const and array of pointers

Rule: An array type is always automatically converted to a constant pointer to the first element

int a, b;
const int * const api[] = {&a, &b};
const int * const * const api = {&a, &b};
*(api[0])   = 9;  // forbidden by FIRST const in array definition
  api[0][0] = 9;  // forbidden by FIRST const in array definition
  api[0]    = &b; // forbidden by SECOND const in array definition

Tested with gcc 3.3.4

const and (array of) function pointers

int if1(void) {return 1;}
int if2(void) {return 2;}
void pointer2FunctionTest(void) {
    int (*       fp1)(void) = if1; // fp1,fp2: pointer to function returning
    int (* const fp2)(void) = if2; // int and empty parameter list
    fp1 = if2; // valid
    fp2 = if1; // invalid: ok
}
void arrayOfPointers2FunctionsTest(void) {
    int (*        fa[])(void) = {if1, if2};
    int (* const cfa[])(void) = {if1, if2};
    fa[0]  = if2; // valid, but intended?
    cfa[0] = if2; // invalid because of const: ok
}

Note the position of the const variable, this is the only position of const that
makes sense (Tested with gcc 3.3.4 and CadulCompiler for Rmos)

const in function parameters

void fkt(const int a, const int *bp, int * const cp) {
    a++;      // invalid!
    bp++;     // valid
    (*bp)++;  // invalid!
    cp++;     // invalid!
    (*cp)++;  // valid
}

pointer to constant data (bp) is imho the only useful & reasonable use

function returning const

int if1(void) {return 1;}
const int cif1(void) {return 1;}
void functionReturningConstTest(void) {
    int i; const int ci;
    i  = cif1();     i  = if1();     // both valid
    ci = cif1();     ci = if1();     // both INVALID!
    i  = (cif1())++; i  = (if1())++; // both INVALID!
    i  = ++(cif1()); i  = ++(if1()); // both INVALID!
}

→ function returning const is imho useless

function returning const pointer

int * ipf(void) {return 0;}
const int * cipf(void) {return 0;} // funct. returning pointer 2 constat data
void functionReturningConstPointerTest(void) {
    int *ip;  const int *cip;
    ip= ipf();   // ok
    ip= cipf();  // generates warning (gcc): imho better would be an error!
    cip= ipf();  // ok
    cip= cipf(); // ok
}

Definition of constant Strings

Getting started

[static] const char mystring[]= "String" // right, needs 6 Bytes
[static] const char *mystring=  "String" // false, needs 6 Bytes + Pointer

Detailed Description

/** Array of constant data.
    Is automatically converted to a CONSTANT of type "pointer to const char"
    (the type of the array-elements) wich contains the address of the first
    element. See CARM p 95. Best way to initalize strings.
    */
const char a[]= "Alma";
 
/** Constant pointer to constant data, but not a CONSTANT (like a above)
    Intitalizing a string like this is bad, see above
    */
const char * const b= "Berta";
 
/** Same type as b, but ok for a re-use of a e.g. as function argument. */
const char * const c= a;
 
/** Array of constant pointers (second const) to constant data (first const)
    1st const necessary because of a */
const char * const apc[] = {
    a, "Willi", /* perfectly legal */
    /* b, c     // illegal, because extern or static variables can only be
                // initialized with CONSTANTS not constant variables
                // see [[Initialisation of variables]] */
};
 
/** Constant Pointer (3rd const) to constant pointer (second const)
    to constant data (first const) */
const char * const * const ppc= apc;
 
int main(void) {
    /* a        =  0; //err: Every array is conv. to const ptr to 1st element */
    /* b[0]     ='A'; //err: a[] is declared as const */
    /* apc[0]   =  0; //err: because of 2nd const in apc definition */
    /* apc[0][0]='d'; //err: because of 1st const in apc definition */
    /* ppc      =  0; //err: because of 3rd const in ppc definition */
    /* ppc[0]   =  0; //err: because of 2nd const in ppc definition */
    /* ppc[0][0]='d'; //err: because of 1st const in ppc definition */
    return 0;
}

sizeof

//Feld von Zeigern auf Funktionen:
static const unsigned char (*setS5Bit[])(unsigned char zielNr, unsigned char bit)={
    NULL,//Reserviert, wenn Eingang nicht aktiv
    konvKom0SetS5Bit,
    konvKom1SetS5Bit,
    extStmSetS5Bit,
    extBtmSetS5Bit,
    extGeraetSetS5Bit
};
#define GETS5BITADR_FKTANZ (sizeof (setS5Bit) / sizeof (setS5Bit[0]))

Bestimmung der Größe des obigen Arrays:
Einsicht in die vom Preprocessor erzeuge Zwischendatei peripher.i (mit der Compileroption -VCPP zeigte, daß GETS5BITADR_FKTANZ wirklich nur textuell durch die sizeof- Klammerausdrücke ersetzt wird, und keine Berechnung erfolgt.
Einsicht in das generierte Assemblerfile peripher.asm ergab, daß die sizeof-Operatoren zur Compilierungszeit und nicht zur Laufzeit ausgeführt werden.
→ Keine Verschwendung von Laufzeit.

Initialisation of Variables

/* Extern & static variables must be initialized with a constant expression:
    See C&R 4.9 p.83
    */
int a; /* uninitialized extern or static variable defaults to 0 */
int b=1;
const int c=3;
//int m= b; /* error in c! (no error in c++) */
//int n= c; /* also error in c! (no error in c++) */
 
/* automatic variables need no constant expression: See C&R 4.9 p.83 */
int main() {
    int u= b+c; /* valid shortcut for: int u; u=b+c; */
    int v[]= {a,b}; /* valid in c with gcc & in c++ */
    return 0;
}

Note: The initialisation of the (stack-)array v is valid with gcc, but issues a warning when gcc is called with the -pedantic switch.

Cadul Compiler Deficiency

int anInt;
struct Point {int x; int y;};
struct Point aPoint= {2,3};
int main(){
    int o= anInt;
    int p[]= {anInt,anInt};
    struct Point q={3,4};
    struct Point r[]={{3,4},{5,6}};
    struct Point s=aPoint;
    struct Point t[]={aPoint,aPoint}; /* error with Cadul! (no error with gcc) */
}

Transfer of Array Sizes

/* arraySource.c: */
int arr[]= {3, 2, 1};
const unsigned ARR_CNT= sizeof arr / sizeof arr[0];
/* arraySource.h: */
extern const unsigned ARR_CNT;
/* target.c: */
#include <stdio.h>
#include <stdlib.h>
#include "arraySource.h"
 
int main(int argc, char **argv) {
    int size= atoi(argv[1]);
 
    static int staticCmdArr[size];      /* Always Error! */
    int         stackCmdArr[size];      /* works with gcc without -pedantic-error */
 
    static int staticTransArr[ARR_CNT]; /* Always Error! */
    int         stackTransArr[ARR_CNT]; /* works with gcc without -pedantic-error */
 
    return 0;
}
#Compiler Commands:
gcc -Wall -ansi -pedantic-error -c target.c && gcc -c arraySource.c && gcc target.o arraySource.o && a.out 7
gcc -Wall                       -c target.c && gcc -c arraySource.c && gcc target.o arraySource.o && a.out 7

FIXME No satisfying solution so far — 2006-08-28 12:02

static

static int eumel= 0;

Outside of a fuction (global Variable)

To prevent linker problems when other object files use other global variables with the same name.

Inside a fuction

How to select Integer Variable Types

  1. Always use int (also when int is way too big or the value will never be never negative, eg. counter variable in for loops), unless one or more of the following exceptions apply:
  2. Use unsigned int when only positive values are allowed. This saves you from the overhead of testing for negative values in function arguments and returned values from functions.
  3. Use unsigned types when bit operations are performed (unsigned types with proper size recommended)
  4. Use another, smaller type when space is relevant (eg in struct definitions or large arrays)
  5. Use a bigger type when the space in int is not sufficient

Private Members in structs

Any pointer type may be an incomplete type. This can be used to get private members in an object:

Library Code

/* file: point-private.h */
 
struct point {
    int x;
    int y;
};
/* file: point.c */
#include <stdlib.h>
#include "point-private.h"
 
struct point * point_new(int x, int y) {
    struct point *p= malloc(sizeof(struct point));
    p->x= x;
    p->y= y;
    return p;
}
 
int point_get_x(struct point *this) {
    return this->x;
}
/* file: point.h */
 
struct point * point_new(int x, int y);
 
int point_get_x(struct point *this);

Client Code

#include <stdio.h>
#include "point.h"
 
int main(void) {
    struct point *p = point_new(7,4);
 
    printf("x=%d\n", point_get_x(p));
    //printf("x=%d\n", p->x); // Error: incomplete type
 
    return 0;
}

Unsorted Tips

2do / Pending

1)
The C programming language p.59
2)
CARM p.351
3)
RRUSP p.68
4)
CARM p.112